Characteristics of flow reversal in the kinetic regime

Yogi W Budhi

Abstract


In principle, reactor perturbation by flow reversal can be used for manipulation of catalyst surface coverage if a dedicated and proper operation procedure can be developed. A mathematical model and analysis of reverse flow reactor behaviour for the ammonia oxidation over platinum have been performed. Series of reverse flow experiments were carried out on a laboratory reactor scale. The influence of flow reversals on the conversion and selectivity at various switching times was observed and evaluated. Other process variables such as gas residence time, reaction temperature, and oxygen concentration in the feed were points of interest. Assessment of reactor dynamics in the kinetic regimes can be achieved most expediently by implementing a comparable switching time and gas residence time. Model and experimental results indicate that regular reverse flow operation for manipulation of catalyst surface coverage always induces a decrease of conversion. It was also found that the selectivity due to flow reversal was rather insensitive to changes in the switching frequency.

Keywords: Ammonia oxidation, Kinetic regime, Reactor modeling, Residence time distribution, Reverse flow reactor operation, Transient operation

 

Abstrak

Pada dasarnya pertubasi reaktor oleh aliran balik dapat digunakan untuk mengatasi penutupan permukaan katalis manakala suatu suatu prosedur operasi yang spesifik dan sesuai bisa dibangun. Analisa dan model matematika kelakuan reaktor batik untuk oksidasi amoniak pada pelat platina telah dilakukan. Serangkaian percobaan aliran balik telah dilangsungkan dalam skala laboratorium. Pengaruh aliran batik terhadap konversi dan selektivitas pada berbagaijumlah putaran aliran telah diamati dan dievaluasi. Variabel proses lainnya, seperti waktu tinggal gas, temperature reaksi, dan konsentrasi oksigen pada umpan telah menjadi perhatian pada penelitian ini. Perkiraan dinamika reaktor dalam rejim kinetika umumnya dapat diperoleh melalui penelusuran implementasi jumlah putaran aliran dan waktu tinggal gas dengan perbandingan tertentu. Hasil percobaan dan pemodelan mengindikasikan bahwa operasi aliran batik reguler untuk memanipulasi penutupan permukaan katalis selalu mengakibatkan penurunan konversi. Selain itu, ditemukan juga bahwa selectivitas terhadap pembalikan aliran kurang sensitif terhadap perubahan pada frekuensi putaran aliran.

Keywords: Distribusi waktu tinggal, Operasi reaktor aliran batik, Operasi transient, Oksidasi amoniak, Pemodelan reaktor, Rejim kinetika


Full Text:

PDF

References


Bailey, J.E., 1973. Periodic operation of chemical reactors: a review. Chemical Engineering Communication I, 111-124.

Boreskov, G.K., Bunimovich, G.A., Matros, Yu.Sh., Ivanov, A.A., 1982. Catalytic processes under non-steady state conditions. II. Switching the direction for the feed of the reaction mixture to the catalyst bed. Experimental results. Kinetic and Catalysis 23 (2), 402-406.

Boreskov, G.K., Matros, Yu.Sh., 1983. Unsteady-state performance of heterogeneous catalytic reactions. Catalysis Review Science and Engineering 25,551-590.

Bradley, J.M., Hopkinson, A., King, D.A., 1997. A molecular beam study of ammonia adsorption on Pt{100}. Surface Science 371. 255-263.

Budhi, Y.W., 2005. Reverse Flow Reactor Operation for Control of Catalyst Surface Coverage. Ph.D. Dissertation, Technische Universiteit Eindhoven, the Netherlands.

Budhi, Y.W., Hoebink, J.H.B.J., Schouten, J.C., 2004b. Reverse flow operation with reactor side feeding: Analysis, modeling, and simulation. Industrial and Engineering Chemistry Research 43, 6955-6963.

Budhi, Y.W., Jaree, A., Hoebink, J.H.B.J., Schouten, J.C., 2004a. Simulation of reverse flow operation for manipulation of catalyst surface coverage in the selective oxidation of ammonia. Chemical Engineering Science 59, 4125-4135.

Campman, M., 1996. Kinetics of Carbon Monoxide Oxidation over Supported Platinum Catalytsts. The Role of Steam in the Presence of Ceria. Ph.D. Dissertation, Technische Universiteit Eindhoven, the Netherlands.

Dautzenberg, F.M., 1994. Selected Topics from Applied Industrial Catalysis. Ph.D. Dissertation, Technische Universiteit Eindhoven, the Netherlands.

Douglas, J.M., Rippin, D.W.T., 1966. Unsteady state process operation. Chemical Engineering Science 21, 305-315.

Ferreira, R.Q., Costa, C.A., Masetti, S., 1999. Reverse-flow reactor for a selective oxidation process. Chemical Engineering Science 54,4615-4627.

Froment, G.F., Bischoff, K.B., 1990. Chemical Reactor Analysis and Design, 2nd ed., Wiley.

Harmsen, J.M.A., 2001. Kinetic Modelling of the Dynamic Behaviour of an Automotive Three-Way Catalyst under Cold-Start Conditions. Ph.D. Dissertation, Technische Universiteit Eindhoven, the Netherlands.

Hoebink, J.H.B.J., Nievergeld, A.J.L., Marin, G.B., 1999. CO oxidation in a fixed bed reactor with high frequency cycling of the feed. Chemical Engineering Science 54, 4459-4468.

Matros, Yu. Sh., Bunimovich, G. A., 1996. Reverse-flow operation in fixed bed catalytic reactors. Catalysis Review Science and Engineering 38, 1-68.

Mears, D.E., 1971a. Diagnostic criteria for heat transport limitations in fixed bed reactors. Journal of Catalysis 20, 127-131.

Mears, D.E., 1971b. The role of axial dispersion in trickle-flow laboratory reactors. Chemical Engineering Science 26, 1361-1366.

Nievergeld, A.J.L., 1998. Automotive Exhaust Gas Conversion: Reaction Kinetics, Reactor Modelling and Control. Ph.D. Dissertation, Technische Universiteit Eindhoven, the Netherlands.

Ostermaier, J.J., Katzer, J.R., Manogue, W.H., 1974. Crystallite size effects in the low-temperature oxidation of ammonia over supported platinum. Journal of Catalysis 33,457-473.

Ostermaier, J.J., Katzer, J.R., Manogue, W.H., 1976. Platinum catalyst deactivation in low-temperature ammonia oxidation reactions: I. Oxidation of ammonia by molecular oxygen. Journal of Catalysis 41, 277-292.

Rebrov, E.V., de Croon, M.H.J.M., Schouten, J.C., 2002. Development of the kinetic model of platinum catalyzed ammonia oxidation in a microreactor. Chemical Engineering Journal 90, 61-76.

Rosendall, B., Finlayson, B.A., 1995. Transport effects in packed-bed oxidation reactors. Computer and Chemical Engineering 19, 1207-1218.

Sadykov, V.A., Isupova, L.A., Zolotarskii, Bobrova, L.N., Noskov, A.S., Parman, V.N., Brushtein, E.A., Telyatnikova, T.V., Chemyshev, V.I., Lunin, V.V., 2000. Oxide catalyst for ammonia oxidation in nitric acid production: properties and perspective. Applied Catalysis A 204, 59-87.

Silveston, P.L., 1998. Composition Modulation of Catalytic Reactors, Ontario, Canada: Gordon and Breach.

Silveston, P.L., Hudgins, R.R., Renken, A., 1995. Periodic operation of catalytic reactors-introduction and overview. Catalysis Today 25, 91-112.

Zhang, C.J., Lynch, M., Hu, P., 2002. A density functional theory study of step wise addition reactions in ammonia synthesis on Ru(0 0 0 1). Surface Science 496, 221-230.




DOI: http://dx.doi.org/10.5614/jtki.2006.5.3.4

Refbacks

  • There are currently no refbacks.


Copyright (c) 2016 Jurnal Teknik Kimia Indonesia

Jurnal Teknik Kimia Indonesia (JTKI) published by Asosiasi Pendidikan Tinggi Teknik Kimia Indonesia (APTEKIM)

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.